Amorphous Cobalt Vanadium Oxide as a Highly Active Electrocatalyst for Oxygen Evolution
نویسندگان
چکیده
The water-splitting reaction provides a promising mechanism to store renewable energies in the form of hydrogen fuel. The oxidation half-reaction, the oxygen evolution reaction (OER), is a complex four-electron process that constitutes an efficiency bottleneck in water splitting. Here we report a highly active OER catalyst, cobalt vanadium oxide. The catalyst is designed on the basis of a volcano plot of metal-OH bond strength and activity. The catalyst can be synthesized by a facile hydrothermal route. The most active pure-phase material (a-CoVO x ) is X-ray amorphous and provides a 10 mA cm-2 current density at an overpotential of 347 mV in 1 M KOH electrolyte when immobilized on a flat substrate. The synthetic method can also be applied to coat a high-surface-area substrate such as nickel foam. On this three-dimensional substrate, the a-CoVO x catalyst is highly active, reaching 10 mA cm-2 at 254 mV overpotential, with a Tafel slope of only 35 mV dec-1. This work demonstrates a-CoVO x as a promising electrocatalyst for oxygen evolution and validates M-OH bond strength as a practical descriptor in OER catalysis.
منابع مشابه
Nickel Oxide/Carbon Nanotubes as Active Hybrid Material for Oxygen Evolution Reaction
Carbon nanotubes are of great interest due to their high surface area and rich edge sites, which are favorable for wide applications. Here, a simple and efficient routine is presented by decoration of multi-wall carbon nanotube (MWCNT) with nickel oxide (NiO) nanoparticles.The morphologies of NiO-MWCNT were investigated by using scanning electron microscope (SEM) and energydispersive X-...
متن کاملSpinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions.
Development of efficient, affordable electrocatalysts for the oxygen evolution reaction and the oxygen reduction reaction is critical for rechargeable metal-air batteries. Here we present lithium cobalt oxide, synthesized at 400 °C (designated as LT-LiCoO2) that adopts a lithiated spinel structure, as an inexpensive, efficient electrocatalyst for the oxygen evolution reaction. The catalytic act...
متن کاملNovel cobalt quantum dot/graphene nanocomposites as highly efficient electrocatalysts for water splitting.
A cost-effective, non-noble metal based high-performance electrocatalyst for the oxygen evolution reaction (OER) is critical to energy conversion and storage processes. Here, we report on a facile and effective in situ strategy for the synthesis of an advanced nanocomposite material that is comprised of cobalt quantum dots (Co QDs, ∼3.2 nm), uniformly dispersed on reduced graphene oxide (rGO) a...
متن کاملBi-axial grown amorphous MoSx bridged with oxygen on r-GO as a superior stable and efficient nonprecious catalyst for hydrogen evolution
Amorphous molybdenum sulfide (MoSx) is covalently anchored to reduced graphene oxide (r-GO) via a simple one-pot reaction, thereby inducing the reduction of GO and simultaneous doping of heteroatoms on the GO. The oxygen atoms form a bridged between MoSx and GO and play a crucial role in the fine dispersion of the MoSx particles, control of planar MoSx growth, and increase of exposed active sul...
متن کاملCore-Shell Co/CoO Integrated on 3D Nitrogen Doped Reduced Graphene Oxide Aerogel as an Enhanced Electrocatalyst for the Oxygen Reduction Reaction
Here, we demonstrate that Cobalt/cobalt oxide core-shell nanoparticles integrated on nitrogen-doped (N-doped) three-dimensional reduced graphene oxide aerogel-based architecture (Co/CoO-NGA) were synthesized through a facile hydrothermal method followed by annealing treatment. The unique endurable porous structure could provide sufficient mass transfer channels and ample active sites on Co/CoO-...
متن کامل